Asymptotic equidistribution for partition statistics and topological invariants

joint work with William Craig and Joshua Males

Giulia Cesana

Universität zu Köln

March 28, 2022

Giulia Cesana (Universität zu Köln)

Asymptotic equidistribution

March 28, 2022 1 / 42

Table of Contents

Motivation

- 2 Main tools and central theorem
- 3 Results on partition statistics
- 4 Results on topological invariats

5 Some proofs

A partition λ of a positive integer n is a list of non-increasing positive integers, say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$, that satisfies $|\lambda| \coloneqq \lambda_1 + \dots + \lambda_m = n$.

(日) (周) (三) (三)

A partition λ of a positive integer n is a list of non-increasing positive integers, say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$, that satisfies $|\lambda| \coloneqq \lambda_1 + \dots + \lambda_m = n$.

 $p(n) \coloneqq \#$ of partitions of n

イロト イポト イヨト イヨト 二日

A partition λ of a positive integer n is a list of non-increasing positive integers, say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$, that satisfies $|\lambda| := \lambda_1 + \dots + \lambda_m = n$.

 $p(n) \coloneqq \#$ of partitions of n

Example

For n = 4 the possible partitions are given by

イロト イポト イヨト イヨト 二日

A partition λ of a positive integer n is a list of non-increasing positive integers, say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$, that satisfies $|\lambda| := \lambda_1 + \dots + \lambda_m = n$.

 $p(n) \coloneqq \#$ of partitions of n

Example

For n = 4 the possible partitions are given by

$$(4), (3,1), (2,2), (2,1,1), (1,1,1,1).$$

Giulia Cesana (Universität zu Köln)

A partition λ of a positive integer n is a list of non-increasing positive integers, say $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$, that satisfies $|\lambda| \coloneqq \lambda_1 + \dots + \lambda_m = n$.

 $p(n) \coloneqq \#$ of partitions of n

Example

For n = 4 the possible partitions are given by

$$(4), (3,1), (2,2), (2,1,1), (1,1,1,1).$$

Thus we have p(4) = 5.

Giulia Cesana (Universität zu Köln)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Equidistribution properties of certain objects are a central theme studied by many authors in many mathemathical fields.

- 4 同 6 4 日 6 4 日

Equidistribution properties of certain objects are a central theme studied by many authors in many mathemathical fields.

What do we mean when we say asymptotic equidistribution?

4 1 1 1 4 1

Equidistribution properties of certain objects are a central theme studied by many authors in many mathemathical fields.

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function

• • = • • = •

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function e.g. c(n) = p(n).

イロト 不得下 イヨト イヨト

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function e.g. c(n) = p(n). Suppose $s(\lambda)$ is an integer valued partition invariant

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function e.g. c(n) = p(n). Suppose $s(\lambda)$ is an integer valued partition invariant and let

$$c(a, b; n) \coloneqq \#\{\text{partitions of } n : s(\lambda) \equiv a \pmod{b}\}.$$

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function e.g. c(n) = p(n). Suppose $s(\lambda)$ is an integer valued partition invariant and let

$$c(a, b; n) := \#\{\text{partitions of } n : s(\lambda) \equiv a \pmod{b}\}.$$

To say that equidistribution holds is to say that

$$c(a,b;n)\sim rac{1}{b}c(n)$$

as $n \to \infty$.

3

(日) (同) (三) (三)

Asymptotic equidistribution of partition ranks (Males).

3

(人間) トイヨト イヨト

- Asymptotic equidistribution of partition ranks (Males).
- Asymptotic equidistribution results for partitions into k-th powers (Ciolan).

A D A D A D A

- Asymptotic equidistribution of partition ranks (Males).
- Asymptotic equidistribution results for partitions into k-th powers (Ciolan).
- Asymptotic equidistribution for Hodge numbers and Betti numbers of certain Hilbert schemes of surfaces (Gillman-Gonzalez-Ono-Rolen-Schoenbauer).

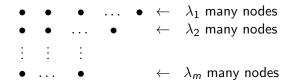
- Asymptotic equidistribution of partition ranks (Males).
- Asymptotic equidistribution results for partitions into k-th powers (Ciolan).
- Asymptotic equidistribution for Hodge numbers and Betti numbers of certain Hilbert schemes of surfaces (Gillman-Gonzalez-Ono-Rolen-Schoenbauer).
- Asymptotic equidistribution of partitions whose parts are values of a given polynomial (Zhou).

< 回 ト < 三 ト < 三 ト

Each partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ has a *Ferrers–Young diagram*:

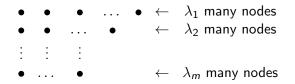
(日) (周) (三) (三)

Each partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ has a *Ferrers–Young diagram*:



イロト イポト イヨト イヨト 二日

Each partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ has a *Ferrers–Young diagram*:



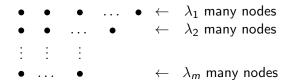
The node in row k and column j has hook length

$$h(k,j) := (\lambda_k - k) + (\lambda'_j - j) + 1,$$

Giulia Cesana (Universität zu Köln)

イロト イポト イヨト イヨト

Each partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ has a *Ferrers–Young diagram*:



The node in row k and column j has hook length

$$h(k,j) := (\lambda_k - k) + (\lambda'_j - j) + 1,$$

 $\lambda'_j \coloneqq \#$ nodes in column *j*.

Giulia Cesana (Universität zu Köln)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let $\mathcal{H}_t(\lambda)$ denote the multiset of *t*-hooks, those hook lengths which are multiples of a fixed positive integer *t*, of a partition λ .

3

イロト イヨト イヨト

Let $\mathcal{H}_t(\lambda)$ denote the multiset of *t*-hooks, those hook lengths which are multiples of a fixed positive integer *t*, of a partition λ . Let

$$p_t^e(n) \coloneqq \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is even}\},\ p_t^o(n) \coloneqq \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is odd}\}.$$

3

(日) (周) (三) (三)

Let $\mathcal{H}_t(\lambda)$ denote the multiset of *t*-hooks, those hook lengths which are multiples of a fixed positive integer *t*, of a partition λ . Let

$$p_t^e(n) \coloneqq \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is even}\},\ p_t^o(n) \coloneqq \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is odd}\}.$$

Craig-Pun:

For even t the partitions of n are asymptotically equidistributed between these two subsets, for odd t they are not.

Let $\mathcal{H}_t(\lambda)$ denote the multiset of *t*-hooks, those hook lengths which are multiples of a fixed positive integer *t*, of a partition λ . Let

$$p_t^e(n) \coloneqq \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is even}\}, \\ p_t^o(n) \coloneqq \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is odd}\}.$$

Craig-Pun:

For even t the partitions of n are asymptotically equidistributed between these two subsets, for odd t they are not.

Bringmann-Craig-Males-Ono:

On arithmetic progressions modulo odd primes *t*-hooks are not asymptotically equdistributed. The Betti numbers of two specific Hilbert schemes are asymptotically equdistributed.

Wright's Circle Method

Hardy-Ramanujan, 1918

$$p(n)\sim rac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{rac{2n}{3}}}, \qquad ext{as } n
ightarrow\infty.$$

3

→ 3 → 4 3

Wright's Circle Method

Hardy-Ramanujan, 1918

$$p(n)\sim rac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{rac{2n}{3}}}, \qquad ext{as } n
ightarrow\infty.$$

The essence of Wright's method is to use Cauchy's theorem.

3

A B F A B F

Hardy-Ramanujan, 1918

$$p(n)\sim rac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{rac{2n}{3}}}, \qquad ext{as } n
ightarrow\infty.$$

The essence of Wright's method is to use Cauchy's theorem. We have

$$\mathcal{A}(\tau) := \sum_{n \ge 0} a(n)q^n \quad \longrightarrow \quad a(n) = \frac{1}{2\pi i} \int_C \frac{\mathcal{A}(q)}{q^{n+1}} dq,$$

where $q = e^{2\pi i \tau}$.

3

- 本間 と 本語 と 本語 と

Hardy-Ramanujan, 1918

$$p(n)\sim rac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{rac{2n}{3}}}, \qquad ext{as } n
ightarrow\infty.$$

The essence of Wright's method is to use Cauchy's theorem. We have

$$\mathcal{A}(\tau) := \sum_{n \ge 0} \mathsf{a}(n) q^n \quad \longrightarrow \quad \mathsf{a}(n) = \frac{1}{2\pi i} \int_C \frac{\mathcal{A}(q)}{q^{n+1}} dq,$$

where $q = e^{2\pi i \tau}$. One then splits the integral into two arcs, the *major arc* and *minor arc*.

(人間) トイヨト イヨト

Hardy-Ramanujan, 1918

$$p(n)\sim rac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{rac{2n}{3}}}, \qquad ext{as } n
ightarrow\infty.$$

The essence of Wright's method is to use Cauchy's theorem. We have

$$\mathcal{A}(\tau) := \sum_{n \ge 0} a(n)q^n \quad \longrightarrow \quad a(n) = \frac{1}{2\pi i} \int_C \frac{\mathcal{A}(q)}{q^{n+1}} dq,$$

where $q = e^{2\pi i \tau}$. One then splits the integral into two arcs, the *major arc* and *minor arc*.

Following Wright and the work of Ngo–Rhoades, Bringmann–Craig–Males–Ono proved the following variant of Wright's Circle Method.

Giulia Cesana (Universität zu Köln)

イロト 不得下 イヨト イヨト 二日

Let M > 0 be a fixed constant and $z = x + iy \in \mathbb{C}$, with x > 0 and $|y| < \pi$.

3

(日) (同) (三) (三)

Let M > 0 be a fixed constant and $z = x + iy \in \mathbb{C}$, with x > 0 and $|y| < \pi$. Consider the following hypotheses:

- 4 同 6 4 日 6 4 日 6

Let M > 0 be a fixed constant and $z = x + iy \in \mathbb{C}$, with x > 0 and $|y| < \pi$.

Consider the following hypotheses:

(i) As $z \to 0$ in the bounded cone $|y| \le Mx$ (major arc), we have

$$F(e^{-z}) = z^{B}e^{\frac{A}{z}}\left(\alpha_{0} + O_{M}\left(|z|\right)\right),$$

where $\alpha_0 \in \mathbb{C}$, $A \in \mathbb{R}^+$, and $B \in \mathbb{R}$.

Let M > 0 be a fixed constant and $z = x + iy \in \mathbb{C}$, with x > 0 and $|y| < \pi$.

Consider the following hypotheses:

(i) As $z \to 0$ in the bounded cone $|y| \le Mx$ (major arc), we have

$$F(e^{-z}) = z^{B}e^{\frac{A}{z}}\left(\alpha_{0} + O_{M}\left(|z|\right)\right),$$

where $\alpha_0 \in \mathbb{C}$, $A \in \mathbb{R}^+$, and $B \in \mathbb{R}$.

(ii) As $z \to 0$ in the bounded cone $Mx \le |y| < \pi$ (minor arc), we have

$$|F(e^{-z})| \ll_M e^{\frac{1}{\operatorname{Re}(z)}(A-\kappa)}$$

for some $\kappa \in \mathbb{R}^+$.

Suppose that F(q) is analytic for $q = e^{-z}$ where $z = x + iy \in \mathbb{C}$ satisfies x > 0 and $|y| < \pi$,

< 回 ト < 三 ト < 三 ト

Bringmann–Craig–Males–Ono, 2021

Suppose that F(q) is analytic for $q = e^{-z}$ where $z = x + iy \in \mathbb{C}$ satisfies x > 0 and $|y| < \pi$, and suppose that F(q) has an expansion $F(q) = \sum_{n=0}^{\infty} c(n)q^n$ near 1.

・聞き くほき くほき 二日

Suppose that F(q) is analytic for $q = e^{-z}$ where $z = x + iy \in \mathbb{C}$ satisfies x > 0 and $|y| < \pi$, and suppose that F(q) has an expansion $F(q) = \sum_{n=0}^{\infty} c(n)q^n$ near 1. If (i) and (ii) hold, then as $n \to \infty$ we have

・聞き くほき くほき 二日

Suppose that F(q) is analytic for $q = e^{-z}$ where $z = x + iy \in \mathbb{C}$ satisfies x > 0 and $|y| < \pi$, and suppose that F(q) has an expansion $F(q) = \sum_{n=0}^{\infty} c(n)q^n$ near 1. If (i) and (ii) hold, then as $n \to \infty$ we have

$$c(n) = n^{\frac{1}{4}(-2B-3)}e^{2\sqrt{An}}\left(p_0 + O\left(n^{-\frac{1}{2}}\right)\right),$$

Giulia Cesana (Universität zu Köln)

(4個) (4回) (4回) (5)

Suppose that F(q) is analytic for $q = e^{-z}$ where $z = x + iy \in \mathbb{C}$ satisfies x > 0 and $|y| < \pi$, and suppose that F(q) has an expansion $F(q) = \sum_{n=0}^{\infty} c(n)q^n$ near 1. If (i) and (ii) hold, then as $n \to \infty$ we have

$$c(n) = n^{\frac{1}{4}(-2B-3)}e^{2\sqrt{An}}\left(p_0 + O\left(n^{-\frac{1}{2}}\right)\right),$$

where
$$p_0 = \alpha_0 \frac{\sqrt{A}^{B+\frac{1}{2}}}{2\sqrt{\pi}}$$
.

Giulia Cesana (Universität zu Köln)

- 4 個 ト 4 国 ト - 4 国 ト - 三日

Let $q = e^{-z}$, where $z = x + iy \in \mathbb{C}$ with x > 0 and $|y| < \pi$.

Let $q = e^{-z}$, where $z = x + iy \in \mathbb{C}$ with x > 0 and $|y| < \pi$. Furthermore let $\zeta = \zeta_b^a := e^{\frac{2\pi ia}{b}}$ $(b \ge 2 \text{ and } 0 \le a < b)$.

Let $q = e^{-z}$, where $z = x + iy \in \mathbb{C}$ with x > 0 and $|y| < \pi$. Furthermore let $\zeta = \zeta_b^a \coloneqq e^{\frac{2\pi ia}{b}}$ ($b \ge 2$ and $0 \le a < b$). Assume that we have a generating function on arithmetic progressions a (mod b) given by

$$H(a,b;q) \coloneqq \sum_{n\geq 0} c(a,b;n)q^n,$$

for some coefficients c(a, b; n)

(4回) (三) (三) (三) (○) (○)

Let $q = e^{-z}$, where $z = x + iy \in \mathbb{C}$ with x > 0 and $|y| < \pi$. Furthermore let $\zeta = \zeta_b^a \coloneqq e^{\frac{2\pi ia}{b}}$ ($b \ge 2$ and $0 \le a < b$). Assume that we have a generating function on arithmetic progressions a (mod b) given by

$$H(a,b;q) := \sum_{n\geq 0} c(a,b;n)q^n,$$

for some coefficients c(a, b; n) such that

$$H(a,b;q) = \frac{1}{b} \sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j;q)$$

Giulia Cesana (Universität zu Köln)

Let $q = e^{-z}$, where $z = x + iy \in \mathbb{C}$ with x > 0 and $|y| < \pi$. Furthermore let $\zeta = \zeta_b^a \coloneqq e^{\frac{2\pi ia}{b}}$ ($b \ge 2$ and $0 \le a < b$). Assume that we have a generating function on arithmetic progressions a (mod b) given by

$$H(a,b;q) := \sum_{n\geq 0} c(a,b;n)q^n,$$

for some coefficients c(a, b; n) such that

$$H(a,b;q) = \frac{1}{b} \sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j;q)$$

for some generating functions $H(\zeta; q)$, with

$$H(q) \coloneqq H(1;q) = \sum_{n \ge 0} c(n)q^n.$$

Giulia Cesana (Universität zu Köln)

Let H(a, b; q) and $H(\zeta; q)$ be analytic on |q| < 1 such that the above holds.

Let H(a, b; q) and $H(\zeta; q)$ be analytic on |q| < 1 such that the above holds.

Let $C = C_n$ be a sequence of circles centered at the origin inside the unit disk with radii $r_n \rightarrow 1$ as $n \rightarrow \infty$ that loops around zero exactly once.

Let H(a, b; q) and $H(\zeta; q)$ be analytic on |q| < 1 such that the above holds.

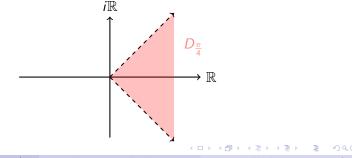
Let $C = C_n$ be a sequence of circles centered at the origin inside the unit disk with radii $r_n \to 1$ as $n \to \infty$ that loops around zero exactly once. For $0 \le \theta < \frac{\pi}{2}$ let

$$\mathcal{D}_{ heta} \coloneqq \left\{ z = r e^{i lpha} \colon r \geq 0 ext{ and } |lpha| \leq heta
ight\}.$$

Let H(a, b; q) and $H(\zeta; q)$ be analytic on |q| < 1 such that the above holds.

Let $C = C_n$ be a sequence of circles centered at the origin inside the unit disk with radii $r_n \to 1$ as $n \to \infty$ that loops around zero exactly once. For $0 \le \theta < \frac{\pi}{2}$ let

$$\mathcal{D}_{ heta} \coloneqq \left\{ z = \mathit{re}^{ilpha} \colon \mathit{r} \geq \mathsf{0} \,\, \mathsf{and} \,\, |lpha| \leq heta
ight\}.$$



Giulia Cesana (Universität zu Köln)

For $\theta > 0$, let $\widetilde{C} := C \cap D_{\theta}$ and $C \setminus \widetilde{C}$ be arcs such that the following hypotheses hold.

- 32

→

< 4 →

For $\theta > 0$, let $\widetilde{C} := C \cap D_{\theta}$ and $C \setminus \widetilde{C}$ be arcs such that the following hypotheses hold.

(1) As $z \to 0$ outside of D_{θ} , we have

$$\sum_{j=1}^{b-1} \zeta_b^{-aj} H(\zeta_b^j; e^{-z}) = O(H(1; e^{-z})).$$

For $\theta > 0$, let $\widetilde{C} := C \cap D_{\theta}$ and $C \setminus \widetilde{C}$ be arcs such that the following hypotheses hold.

(1) As $z \to 0$ outside of D_{θ} , we have

$$\sum_{j=1}^{b-1} \zeta_b^{-aj} H(\zeta_b^j; e^{-z}) = O(H(1; e^{-z})).$$

(2) As $z \to 0$ in D_{θ} , we have for each $1 \le j \le b - 1$ that $H(\zeta_b^j; e^{-z}) = o(H(1; e^{-z})).$

For $\theta > 0$, let $\widetilde{C} := C \cap D_{\theta}$ and $C \setminus \widetilde{C}$ be arcs such that the following hypotheses hold.

(1) As $z \to 0$ outside of D_{θ} , we have

$$\sum_{j=1}^{b-1} \zeta_b^{-aj} H(\zeta_b^j; e^{-z}) = O(H(1; e^{-z})).$$

(2) As $z \to 0$ in D_{θ} , we have for each $1 \le j \le b - 1$ that $H(\zeta_b^j; e^{-z}) = o(H(1; e^{-z})).$

(3) As $n \to \infty$, we have

$$c(n) \sim rac{1}{2\pi i} \int_{\widetilde{C}} rac{H(1;q)}{q^{n+1}} dq.$$

Giulia Cesana (Universität zu Köln)

As $n \to \infty$, we have

$$c(a,b;n)\sim rac{1}{b}c(n).$$

3

イロト イポト イヨト イヨト

As $n \to \infty$, we have

$$c(a,b;n)\sim rac{1}{b}c(n).$$

In particular, if H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO we have that

$$c(a, b; n) \sim \frac{1}{b}c(n) \sim \frac{1}{b}n^{\frac{1}{4}(-2B-3)}e^{2\sqrt{An}}\left(p_0 + O\left(n^{-\frac{1}{2}}\right)\right)$$

as $n \to \infty$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Idea of the proof

1 Use Cauchy's theorem and the decomposition of H(a, b; q) to obtain

$$c(a, b; n) = \frac{1}{b} \left[\frac{1}{2\pi i} \int_{C} \frac{\sum_{j=0}^{b-1} \zeta_{b}^{-aj} H(\zeta_{b}^{j}; q)}{q^{n+1}} dq \right].$$

3

- E - N

< 4 ₽ × <

() Use Cauchy's theorem and the decomposition of H(a, b; q) to obtain

$$c(a, b; n) = \frac{1}{b} \left[\frac{1}{2\pi i} \int_C \frac{\sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j; q)}{q^{n+1}} dq \right].$$

Solution Break down the integral over C into the components \widetilde{C} and $C \setminus \widetilde{C}$ and look at each of them seperately.

() Use Cauchy's theorem and the decomposition of H(a, b; q) to obtain

$$c(a, b; n) = rac{1}{b} \left[rac{1}{2\pi i} \int_{C} rac{\sum_{j=0}^{b-1} \zeta_{b}^{-aj} H(\zeta_{b}^{j}; q)}{q^{n+1}} dq
ight].$$

- Solution Break down the integral over C into the components \widetilde{C} and $C \setminus \widetilde{C}$ and look at each of them seperately.
- **③** Along $C \setminus \widetilde{C}$ we have by conditions (1) and (3) that as $n \to \infty$

$$\frac{1}{2\pi i}\int_{C\setminus\widetilde{C}}\frac{\sum_{j=0}^{b-1}\zeta_b^{-aj}H(\zeta_b^j;q)}{q^{n+1}}dq=o\left(\frac{1}{2\pi i}\int_{\widetilde{C}}\frac{H(1;q)}{q^{n+1}}dq\right).$$

Giulia Cesana (Universität zu Köln)

$\ \, {\rm On} \ \, \widetilde{{\cal C}} \ {\rm we \ obtain \ with \ } (2) \ {\rm and \ as \ } n \to \infty \ {\rm that} \ \ \,$

$$\frac{1}{2\pi i}\int_{\widetilde{C}}\frac{\sum_{j=0}^{b-1}\zeta_b^{-aj}H(\zeta_b^j;q)}{q^{n+1}}dq\sim \frac{1}{2\pi i}\int_{\widetilde{C}}\frac{H(1;q)}{q^{n+1}}dq.$$

3

∃ ► < ∃ ►</p>

• On \widetilde{C} we obtain with (2) and as $n \to \infty$ that

$$\frac{1}{2\pi i}\int_{\widetilde{C}}\frac{\sum_{j=0}^{b-1}\zeta_b^{-aj}H(\zeta_b^j;q)}{q^{n+1}}dq\sim \frac{1}{2\pi i}\int_{\widetilde{C}}\frac{H(1;q)}{q^{n+1}}dq.$$

Solution The first claim follows by combining the estimates along \widetilde{C} and $C \setminus \widetilde{C}$.

• On \widetilde{C} we obtain with (2) and as $n \to \infty$ that

$$\frac{1}{2\pi i}\int_{\widetilde{C}}\frac{\sum_{j=0}^{b-1}\zeta_b^{-aj}H(\zeta_b^j;q)}{q^{n+1}}dq\sim \frac{1}{2\pi i}\int_{\widetilde{C}}\frac{H(1;q)}{q^{n+1}}dq.$$

Some in the set of the

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. Then for sufficiently large n_1, n_2 we have

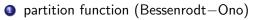
 $c(a, b; n_1)c(a, b; n_2) > c(a, b; n_1 + n_2).$

- 本間下 本臣下 本臣下 三臣

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. Then for sufficiently large n_1, n_2 we have

$$c(a, b; n_1)c(a, b; n_2) > c(a, b; n_1 + n_2).$$

Known examples:



< 回 ト < 三 ト < 三 ト

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. Then for sufficiently large n_1, n_2 we have

$$c(a, b; n_1)c(a, b; n_2) > c(a, b; n_1 + n_2).$$

Known examples:

- partition function (Bessenrodt-Ono)
- partition ranks congruent to a (mod b) (Hou-Jagadeesan, Males)

- 4 同 6 4 日 6 4 日 6

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. For large enough n, we have

 $c(a, b; n)^2 \ge c(a, b; n-1)c(a, b; n+1).$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. For large enough n, we have

$$c(a, b; n)^2 \ge c(a, b; n-1)c(a, b; n+1).$$

Known examples:

partition function (DeSalvo-Pak)

イロト イポト イヨト イヨト 二日

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. For large enough n, we have

$$c(a, b; n)^2 \ge c(a, b; n-1)c(a, b; n+1).$$

Known examples:

- partition function (DeSalvo-Pak)
- unimodal sequences of size n and rank m (Bringmann-Jennings-Shaffer-Mahlburg-Rhoades)

イロト イポト イヨト イヨト 二日

Let $0 \le a < b$ and $b \ge 2$. Assume that H(1; q) and $H(\zeta; q)$ satisfy the conditions of BCMO. For large enough n, we have

$$c(a, b; n)^2 \ge c(a, b; n-1)c(a, b; n+1).$$

Known examples:

- partition function (DeSalvo-Pak)
- unimodal sequences of size n and rank m (Bringmann–Jennings-Shaffer–Mahlburg–Rhoades)
- spt-function (Dawsey-Masri)

The rank

Ramanujan congruences, 1921

For $n \ge 0$ we have

$$p(5n+4) \equiv 0 \pmod{5},$$

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+6) \equiv 0 \pmod{11}.$$

イロト 不得 トイヨト イヨト 二日

The rank

Ramanujan congruences, 1921

For $n \ge 0$ we have

$$p(5n+4) \equiv 0 \pmod{5},$$

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+6) \equiv 0 \pmod{11}.$$

Example

The *rank* of a partition λ is the largest part minus the number of parts.

The rank

Ramanujan congruences, 1921

For $n \ge 0$ we have

$$p(5n+4) \equiv 0 \pmod{5},$$

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+6) \equiv 0 \pmod{11}.$$

Example

The *rank* of a partition λ is the largest part minus the number of parts.

The ranks of the partitions of 4:

The rank

Ramanujan congruences, 1921

For $n \ge 0$ we have

$$p(5n+4) \equiv 0 \pmod{5},$$

 $p(7n+5) \equiv 0 \pmod{7},$
 $p(11n+6) \equiv 0 \pmod{11}.$

Example

The *rank* of a partition λ is the largest part minus the number of parts.

The ranks of the partitions of 4:

8 here and the mental of here	
partition	<u>rank</u>
(4)	$3 \equiv 3 \pmod{5}$
(3, 1)	$1\equiv 1 \pmod{5}$
(2,2)	$0 \equiv 0 \pmod{5}$
(2, 1, 1)	$-1 \equiv 4 \pmod{5}$
(1, 1, 1, 1)	$-3 \equiv 2 \pmod{5}$

N(a, b; n) := # of partitions of n with rank congruent to $a \pmod{b}$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$N(a, b; n) \coloneqq \#$ of partitions of n with rank congruent to $a \pmod{b}$

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. Then as $n \to \infty$ we have that

$$N(a, b; n) = \frac{1}{b}p(n)\left(1 + O\left(n^{-\frac{1}{2}}\right)\right).$$

Giulia Cesana (Universität zu Köln)

$N(a, b; n) \coloneqq \#$ of partitions of n with rank congruent to $a \pmod{b}$

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. Then as $n \to \infty$ we have that

$$N(a,b;n)=rac{1}{b}p(n)\left(1+O\left(n^{-rac{1}{2}}
ight)
ight).$$

The equidistribution of N(a, b; n) was already proven by Males in 2021 using Ingham's Tauberian theorem.

Giulia Cesana (Universität zu Köln)

Asymptotic equidistribution

March 28, 2022 20 / 42

イロト 不得 トイヨト イヨト 二日

The crank

$$\mathsf{crank}(\lambda) := \begin{cases} \mathsf{largest part of } \lambda & \text{ if } \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \text{ if } \omega(\lambda) > 0 \end{cases}$$

 $\omega(\lambda) := \#$ of ones in λ , $\mu(\lambda) := \#$ of parts greater than $\omega(\lambda)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The crank

$$\mathsf{crank}(\lambda) := egin{cases} \mathsf{largest part of } \lambda & \mathsf{if } \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \mathsf{if } \omega(\lambda) > 0 \end{cases}$$

 $\omega(\lambda) := \# \text{ of ones in } \lambda, \quad \mu(\lambda) := \# \text{ of parts greater than } \omega(\lambda)$

 $M(a, b; n) \coloneqq \#$ of partitions of n with crank congruent to $a \pmod{b}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The crank

$$\mathsf{crank}(\lambda) := egin{cases} \mathsf{largest part of} \ \lambda & \mathsf{if} \ \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \mathsf{if} \ \omega(\lambda) > 0 \end{cases}$$

 $\omega(\lambda) := \# \text{ of ones in } \lambda, \quad \mu(\lambda) := \# \text{ of parts greater than } \omega(\lambda)$

 $M(a, b; n) \coloneqq \#$ of partitions of n with crank congruent to $a \pmod{b}$

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. Then as $n \to \infty$ we have that

$$M(a,b;n) = \frac{1}{b}p(n)\left(1+O\left(n^{-\frac{1}{2}}\right)\right).$$

Giulia Cesana (Universität zu Köln)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

An *overpartition* is a partition where the first occurrence of each distinct number may be overlined.

- ×

An *overpartition* is a partition where the first occurrence of each distinct number may be overlined.

Example

The overpartitions of 4 are given by

An *overpartition* is a partition where the first occurrence of each distinct number may be overlined.

Example

The overpartitions of 4 are given by

$$\begin{array}{c} \textbf{(4), (\overline{4}), (\overline{3},1), (\overline{3},1), (3,\overline{1}), (\overline{3},\overline{1}), (2,2), (\overline{2},2), \\ \textbf{(2,1,1), (\overline{2},1,1), (2,\overline{1},1), (\overline{2},\overline{1},1), (1,1,1,1), (\overline{1},1,1,1). \end{array}$$

An *overpartition* is a partition where the first occurrence of each distinct number may be overlined.

Example

The overpartitions of 4 are given by (4), ($\overline{4}$), (3,1), ($\overline{3}$,1), (3, $\overline{1}$), ($\overline{3}$, $\overline{1}$), (2,2), ($\overline{2}$,2), (2,1,1), ($\overline{2}$,1,1), (2, $\overline{1}$,1), ($\overline{2}$, $\overline{1}$,1), (1,1,1,1), ($\overline{1}$,1,1,1).

The *first residual crank* of an overpartition is given by the crank of the subpartition consisting of the non-overlined parts.

- 4 週 ト - 4 三 ト - 4 三 ト

Example

So the first residual crank of $(2,\overline{1},1)$ is given by the crank of (2,1) which equals 0.

Example

So the first residual crank of $(2,\overline{1},1)$ is given by the crank of (2,1) which equals 0.

 $\overline{M}(a, b; n) := \# \text{ of overpartitions of } n$ with first residual crank congruent to a (mod b)

Example

So the first residual crank of $(2,\overline{1},1)$ is given by the crank of (2,1) which equals 0.

$$\overline{M}(a, b; n) := \# \text{ of overpartitions of } n$$
with first residual crank congruent to $a \pmod{b}$

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. Then as $n \to \infty$ we have that

$$\overline{M}(a,b;n) = \frac{1}{8bn} e^{\pi\sqrt{n}} \left(1 + O\left(n^{-\frac{1}{2}}\right)\right).$$

Giulia Cesana (Universität zu Köln)

A plane partition of *n* is a two-dimensional array $\pi_{j,k}$ of non-negative integers $j, k \ge 1$, that is non-increasing in both variables, i.e., $\pi_{j,k} \ge \pi_{j+1,k}, \ \pi_{j,k} \ge \pi_{j,k+1}$ for all *j* and *k*, and fulfils $|\Lambda| := \sum_{j,k} \pi_{j,k} = n$.

- 本間 と えき と えき とうき

A plane partition of n is a two-dimensional array $\pi_{j,k}$ of non-negative integers $j, k \ge 1$, that is non-increasing in both variables, i.e., $\pi_{j,k} \ge \pi_{j+1,k}, \ \pi_{j,k} \ge \pi_{j,k+1}$ for all j and k, and fulfils $|\Lambda| := \sum_{j,k} \pi_{j,k} = n$.

 $pp(n) \coloneqq \#$ plane partitions of n

(4個) (4回) (4回) (5)

A plane partition of n is a two-dimensional array $\pi_{j,k}$ of non-negative integers $j, k \ge 1$, that is non-increasing in both variables, i.e., $\pi_{j,k} \ge \pi_{j+1,k}, \ \pi_{j,k} \ge \pi_{j,k+1}$ for all j and k, and fulfils $|\Lambda| := \sum_{j,k} \pi_{j,k} = n$.

 $pp(n) \coloneqq \#$ plane partitions of n

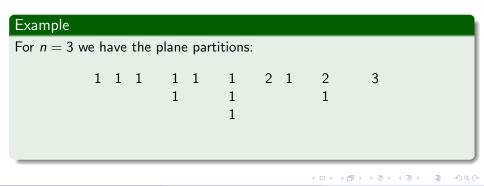
Example

For n = 3 we have the plane partitions:

イロト イポト イヨト イヨト

A plane partition of n is a two-dimensional array $\pi_{j,k}$ of non-negative integers $j, k \ge 1$, that is non-increasing in both variables, i.e., $\pi_{j,k} \ge \pi_{j+1,k}, \ \pi_{j,k} \ge \pi_{j,k+1}$ for all j and k, and fulfils $|\Lambda| := \sum_{j,k} \pi_{j,k} = n$.

 $pp(n) \coloneqq \#$ plane partitions of n



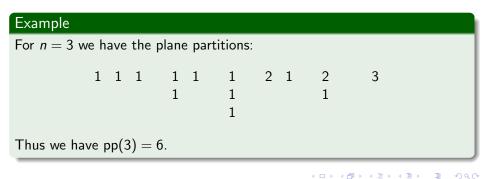
Giulia Cesana (Universität zu Köln)

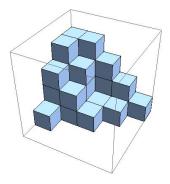
Asymptotic equidistribution

March 28, 2022 24 / 42

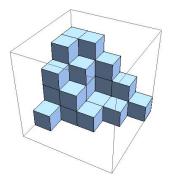
A plane partition of n is a two-dimensional array $\pi_{j,k}$ of non-negative integers $j, k \ge 1$, that is non-increasing in both variables, i.e., $\pi_{j,k} \ge \pi_{j+1,k}, \ \pi_{j,k} \ge \pi_{j,k+1}$ for all j and k, and fulfils $|\Lambda| := \sum_{j,k} \pi_{j,k} = n$.

 $pp(n) \coloneqq \#$ plane partitions of n

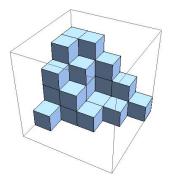




イロン イヨン イヨン イヨン



A plane partition may be represented visually by the placement of a stack of $\pi_{j,k}$ unit cubes above the point (j, k) in the plane, giving a three-dimensional solid.



A plane partition may be represented visually by the placement of a stack of $\pi_{j,k}$ unit cubes above the point (j, k) in the plane, giving a three-dimensional solid.

The sum $|\Lambda|$ then describes the number of cubes of which the plane partition consists.

Giulia Cesana (Universität zu Köln)

Let $\Lambda = {\pi_{j,k}}_{j,k \ge 1}$ and define its *trace* by $t(\Lambda) = \sum_{j=1}^{\infty} \pi_{j,j}$.

イロト イポト イヨト イヨト 二日

Let $\Lambda = {\pi_{j,k}}_{j,k \ge 1}$ and define its *trace* by $t(\Lambda) = \sum_{j=1}^{\infty} \pi_{j,j}$.

 $pp(a, b; n) \coloneqq \#\{\Lambda : |\Lambda| = n, t(\Lambda) \equiv a \pmod{b}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let
$$\Lambda = {\pi_{j,k}}_{j,k\geq 1}$$
 and define its *trace* by $t(\Lambda) = \sum_{j=1}^{\infty} \pi_{j,j}$.

$$pp(a, b; n) \coloneqq \#\{\Lambda : |\Lambda| = n, t(\Lambda) \equiv a \pmod{b}\}$$

Example

We have that pp(0,2;3) = 2 and pp(1,2;3) = 4.

Giulia Cesana (Universität zu Köln)

- 32

イロト イポト イヨト イヨト

Let
$$\Lambda = {\pi_{j,k}}_{j,k\geq 1}$$
 and define its *trace* by $t(\Lambda) = \sum_{j=1}^{\infty} \pi_{j,j}$.

$$pp(a, b; n) \coloneqq \#\{\Lambda : |\Lambda| = n, t(\Lambda) \equiv a \pmod{b}\}$$

Example

We have that pp(0, 2; 3) = 2 and pp(1, 2; 3) = 4.

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. Then as $n \to \infty$ we have that

$$\operatorname{pp}(a, b; n) \sim \frac{1}{b} \operatorname{pp}(n)$$

Giulia Cesana (Universität zu Köln)

3

(日) (同) (三) (三)

Let
$$\Lambda = {\pi_{j,k}}_{j,k\geq 1}$$
 and define its *trace* by $t(\Lambda) = \sum_{j=1}^{\infty} \pi_{j,j}$.

$$pp(a, b; n) \coloneqq \#\{\Lambda : |\Lambda| = n, t(\Lambda) \equiv a \pmod{b}\}$$

Example

We have that pp(0, 2; 3) = 2 and pp(1, 2; 3) = 4.

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. Then as $n \to \infty$ we have that

$$\mathsf{pp}(a, b; n) \sim \frac{1}{b} \mathsf{pp}(n) \sim \frac{1}{b} \frac{\zeta(3)^{\frac{7}{56}}}{\sqrt{12\pi}} \left(\frac{n}{2}\right)^{-\frac{25}{36}} \exp\left(3\zeta(3)^{\frac{1}{3}} \left(\frac{n}{2}\right)^{\frac{2}{3}} + \zeta'(-1)\right).$$

Giulia Cesana (Universität zu Köln)

3

(日) (同) (三) (三)

Betti numbers count the dimension of certain vector spaces of differential forms of a manifold.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Betti numbers count the dimension of certain vector spaces of differential forms of a manifold.

For a Hilbert scheme X, let $b_j(X) := \dim(H_j(X, \mathbb{Q}))$ be the *Betti* numbers, where $H_j(X, \mathbb{Q})$ denotes the *j*-th homology group of X with rational coefficients.

Betti numbers count the dimension of certain vector spaces of differential forms of a manifold.

For a Hilbert scheme X, let $b_j(X) := \dim(H_j(X, \mathbb{Q}))$ be the *Betti* numbers, where $H_j(X, \mathbb{Q})$ denotes the *j*-th homology group of X with rational coefficients.

$$B(a,b;X) \coloneqq \sum_{j \equiv a \pmod{b}} b_j(X)$$

Betti numbers count the dimension of certain vector spaces of differential forms of a manifold.

For a Hilbert scheme X, let $b_j(X) := \dim(H_j(X, \mathbb{Q}))$ be the *Betti* numbers, where $H_j(X, \mathbb{Q})$ denotes the *j*-th homology group of X with rational coefficients.

$$B(a,b;X) \coloneqq \sum_{j \equiv a \pmod{b}} b_j(X)$$

We define the Hilbert schemes

$$\begin{split} X_1 &\coloneqq \mathsf{Hilb}^{n,n+1,n+2}(0), \qquad X_2 &\coloneqq \mathsf{Hilb}^{n,n+2}(0), \\ X_3 &\coloneqq \mathsf{Hilb}^{n,n+2}\left(\mathbb{C}^2\right)_{\mathsf{tr}}, \qquad X_4 &\coloneqq \widehat{M}^m(c_N), \end{split}$$

where $m \in \mathbb{N}$ and c_N is some prescribed homological data.

Giulia Cesana (Universität zu Köln)

Asymptotic equidistribution

C.-Craig-Males, 2021

Let $0 \le a < b$ with $b \ge 2$ and

0

$$\mathcal{L}(\boldsymbol{a},\boldsymbol{b}) \coloneqq \begin{cases} rac{1}{b} & ext{if } \boldsymbol{a} \\ rac{2}{b} & ext{if } \boldsymbol{a} \\ 0 & ext{if } \boldsymbol{a} \end{cases}$$

if b is odd,
if a and b are even,
if a is odd and b is even.

Giulia Cesana (Universität zu Köln)

C.-Craig-Males, 2021

Let $0 \le a < b$ with $b \ge 2$ and

$$d(a,b) := \begin{cases} \frac{1}{b} & \text{if } b \text{ is odd,} \\ \frac{2}{b} & \text{if } a \text{ and } b \text{ are even,} \\ 0 & \text{if } a \text{ is odd and } b \text{ is even.} \end{cases}$$

Then as $n \to \infty$ we have that

$$\frac{1}{2}B(a,b;X_1) \sim B(a,b;X_2) \sim B(a,b;X_3) = \frac{d(a,b)\sqrt{3}}{4\pi^2}e^{\pi\sqrt{\frac{2\pi}{3}}}\left(1 + O\left(n^{-\frac{1}{2}}\right)\right)$$

C.-Craig-Males, 2021

Let $0 \le a < b$ with $b \ge 2$ and

 $d(a,b) \coloneqq \begin{cases} \frac{1}{b} & \text{if } b \text{ is odd,} \\ \frac{2}{b} & \text{if } a \text{ and } b \text{ are even,} \\ 0 & \text{if } a \text{ is odd and } b \text{ is even.} \end{cases}$

Then as $n \to \infty$ we have that

$$\frac{1}{2}B(a,b;X_1) \sim B(a,b;X_2) \sim B(a,b;X_3) = \frac{d(a,b)\sqrt{3}}{4\pi^2}e^{\pi\sqrt{\frac{2\pi}{3}}}\left(1 + O\left(n^{-\frac{1}{2}}\right)\right)$$

and

$$B(a, b; X_4) = \frac{d(a, b)n^{\frac{m-2}{2}}}{6^{\frac{1-m}{2}}2\sqrt{2}c_m\pi^m}e^{\pi\sqrt{\frac{2n}{3}}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right),$$

where $\prod_{j=1}^{m} \frac{1}{1-e^{-jz}} = \frac{1}{c_m z^m} + O(z^{-m+1}).$

Giulia Cesana (Universität zu Köln)

A particular scheme of Göttsche

Let K be an algebraically closed field.

3

-

< ⊢□

A particular scheme of Göttsche

Let K be an algebraically closed field. Let m be the maximal ideal in K[[x, y]], and define

$$V_{n,K} \coloneqq \operatorname{Hilb}_n\left(\operatorname{spec}\left(K[[x,y]]/\boldsymbol{m}^n\right)\right).$$

3

A D A D A D A

A particular scheme of Göttsche

Let K be an algebraically closed field. Let m be the maximal ideal in K[[x, y]], and define

$$V_{n,K} \coloneqq \mathsf{Hilb}_n\left(\mathsf{spec}\left(K[[x,y]]/\boldsymbol{m}^n
ight)
ight).$$

$$v(a, b; n) \coloneqq \#$$
 of cells of $V_{n,K}$
whose dimension is congruent to $a \pmod{b}$

3

一日、

A particular scheme of Göttsche

Let K be an algebraically closed field. Let m be the maximal ideal in K[[x, y]], and define

$$V_{n,K} \coloneqq \mathsf{Hilb}_n\left(\mathsf{spec}\left(K[[x,y]]/\boldsymbol{m}^n
ight)
ight).$$

$$v(a, b; n) \coloneqq \#$$
 of cells of $V_{n,K}$
whose dimension is congruent to $a \pmod{b}$

C.-Craig-Males, 2021

Let $0 \le a < b$ and $b \ge 2$. As $n \to \infty$ we have that

$$v(a,b;n) = \frac{1}{b}p(n)\left(1+O\left(n^{-\frac{1}{2}}\right)\right).$$

Giulia Cesana (Universität zu Köln)

March 28, 2022 29 / 42

- E

3 ×

< 67 ▶

Using orthogonality of roots of unity we have

$$\sum_{n\geq 0} M(a,b;n)q^n = \frac{1}{b}\sum_{n\geq 0} p(n)q^n + \frac{1}{b}\sum_{j=1}^{b-1} \zeta_b^{-aj} C\left(\zeta_b^j;q\right),$$

3

Using orthogonality of roots of unity we have

$$\sum_{n\geq 0} M(a,b;n)q^n = \frac{1}{b}\sum_{n\geq 0} p(n)q^n + \frac{1}{b}\sum_{j=1}^{b-1} \zeta_b^{-aj} C\left(\zeta_b^j;q\right),$$

where

$$C\left(\zeta;q
ight) \coloneqq rac{(q;q)_{\infty}}{F_1\left(\zeta;q
ight)F_1\left(\zeta^{-1};q
ight)},$$

Giulia Cesana (Universität zu Köln)

3

Using orthogonality of roots of unity we have

$$\sum_{n\geq 0} M(a,b;n)q^n = \frac{1}{b}\sum_{n\geq 0} p(n)q^n + \frac{1}{b}\sum_{j=1}^{b-1} \zeta_b^{-aj} C\left(\zeta_b^j;q\right),$$

where

$$C\left(\zeta;q
ight)\coloneqq rac{(q;q)_{\infty}}{F_{1}\left(\zeta;q
ight)F_{1}\left(\zeta^{-1};q
ight)},$$

with $(q;q)_{\infty} \coloneqq \prod_{\ell=1}^{\infty} (1-q^{\ell})$ and $F_1(\zeta;q) \coloneqq \prod_{n=1}^{\infty} (1-\zeta q^n)$.

Giulia Cesana (Universität zu Köln)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

As $z \to 0$ in D_{θ} , for $q = e^{-z}$ and ζ a primitive *b*-th root of unity (Bringmann-Craig-Males-Ono)

$$F_1\left(\zeta; e^{-z}\right) = \frac{1}{\sqrt{1-\zeta}} e^{-\frac{\zeta\Phi(\zeta,2,1)}{z}} \left(1+O\left(|z|\right)\right),$$

As $z \to 0$ in D_{θ} , for $q = e^{-z}$ and ζ a primitive *b*-th root of unity (Bringmann-Craig-Males-Ono)

$$F_1\left(\zeta; e^{-z}\right) = \frac{1}{\sqrt{1-\zeta}} e^{-\frac{\zeta\Phi(\zeta,2,1)}{z}} \left(1+O\left(|z|\right)\right),$$

where Φ is the *l* erch's transcendent

$$\Phi(z,s,a) := \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s}.$$

- 4 同 6 4 日 6 4 日 6

As $z \to 0$ in D_{θ} , for $q = e^{-z}$ and ζ a primitive *b*-th root of unity (Bringmann-Craig-Males-Ono)

$$F_1\left(\zeta; e^{-z}\right) = \frac{1}{\sqrt{1-\zeta}} e^{-\frac{\zeta \Phi(\zeta,2,1)}{z}} \left(1+O\left(|z|\right)\right),$$

where Φ is the *l* erch's transcendent

$$\Phi(z,s,a) := \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s}.$$

On the major arc (Bringmann–Dousse)

$$(e^{-z};e^{-z})_{\infty}^{-1} = \sqrt{\frac{z}{2\pi}}e^{\frac{\pi^2}{6z}}(1+O(|z|)),$$

Giulia Cesana (Universität zu Köln)

< 回 ト < 三 ト < 三 ト

As $z \to 0$ in D_{θ} , for $q = e^{-z}$ and ζ a primitive *b*-th root of unity (Bringmann-Craig-Males-Ono)

$$F_1\left(\zeta; e^{-z}\right) = \frac{1}{\sqrt{1-\zeta}} e^{-\frac{\zeta\Phi(\zeta,2,1)}{z}} \left(1+O\left(|z|\right)\right),$$

where Φ is the Lerch's transcendent

$$\Phi(z,s,a) := \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s}.$$

On the major arc (Bringmann-Dousse)

$$(e^{-z};e^{-z})_{\infty}^{-1} = \sqrt{\frac{z}{2\pi}}e^{\frac{\pi^2}{6z}}(1+O(|z|)),$$

while on the minor arc, for some $\mathcal{C}>0$

$$\left|\left(e^{-z};e^{-z}\right)_{\infty}^{-1}\right| \leq x^{\frac{1}{2}}e^{\frac{\pi^2}{6x}-\frac{\mathcal{C}}{x}}.$$

Giulia Cesana (Universität zu Köln)

Using the definition of $F_1(\zeta; q)$

$$igg| \mathsf{Log}\left(rac{1}{F_1(\zeta;q)}
ight) igg| = igg|_{k \ge 1} rac{\zeta^k}{k} rac{q^k}{1-q^k} igg| \ \leq igg| rac{\zeta q}{1-q} igg| - rac{|q|}{1-|q|} + \log\left(rac{1}{(|q|;|q|)_\infty}
ight).$$

-2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using the definition of $F_1(\zeta; q)$

$$\begin{split} \left| \operatorname{Log} \left(\frac{1}{F_1(\zeta; q)} \right) \right| &= \left| \sum_{k \ge 1} \frac{\zeta^k}{k} \frac{q^k}{1 - q^k} \right| \\ &\leq \left| \frac{\zeta q}{1 - q} \right| - \frac{|q|}{1 - |q|} + \log \left(\frac{1}{(|q|; |q|)_{\infty}} \right). \\ \\ \Rightarrow \qquad \left| \frac{1}{F_1(\zeta; q)} \right| \ll e^{-\frac{C'}{\chi}} (|q|; |q|)_{\infty}^{-1}, \end{split}$$

for some $\mathcal{C}' > 0$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Since an analogous calculation holds for $F_1(\zeta^{-1}; q)$ one may conclude that

$$\left| C\left(\zeta_{b}^{j};q
ight) \right| < \left| (q;q)_{\infty}^{-1}
ight|$$

on the minor arc.

Since an analogous calculation holds for $F_1(\zeta^{-1}; q)$ one may conclude that

$$\left|C\left(\zeta_b^j;q\right)\right| < \left|(q;q)_\infty^{-1}\right|$$

on the minor arc.

For the major arc

$$C(\zeta; q) \ll e^{-\frac{\pi^2}{6}\operatorname{Re}\left(\frac{1}{z}\right) + \operatorname{Re}\left(\frac{\zeta\Phi(\zeta, 2, 1)}{z}\right) + \operatorname{Re}\left(\frac{\zeta^{-1}\Phi(\zeta^{-1}, 2, 1)}{z}\right)}$$

Giulia Cesana (Universität zu Köln)

3

Therefore

$$C\left(\zeta_b^j;q\right) = o\left((q;q)_\infty^{-1}\right)$$

if and only if

$$\left(\frac{\pi^2}{3} - \varepsilon - \phi_1 - \phi_1'\right) \frac{x}{|z|^2} > \left(\phi_2 + \phi_2'\right) \frac{y}{|z|^2},$$

Giulia Cesana (Universität zu Köln)

э

イロト イポト イヨト イヨト

Therefore

$$C\left(\zeta_b^j;q\right) = o\left((q;q)_\infty^{-1}\right)$$

if and only if

$$\left(\frac{\pi^2}{3} - \varepsilon - \phi_1 - \phi_1'\right) \frac{x}{|z|^2} > \left(\phi_2 + \phi_2'\right) \frac{y}{|z|^2},$$

where $\phi_1 + i\phi_2 \coloneqq \zeta_b^j \Phi(\zeta_b^j, 2, 1)$ and $\phi'_1 + i\phi'_2 \coloneqq \zeta_b^{-j} \Phi(\zeta_b^{-j}, 2, 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Note that
$$\phi_1 = \frac{\pi^2}{6} - \frac{\pi^2 j}{b} \left(1 - \frac{j}{b}\right) = \phi_1'$$
 and $\phi_2 = -\phi_2'$.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Note that
$$\phi_1 = \frac{\pi^2}{6} - \frac{\pi^2 j}{b} \left(1 - \frac{j}{b}\right) = \phi'_1$$
 and $\phi_2 = -\phi'_2$.
Therefore, our assumption reduces to

$$\left(rac{2\pi^2 j}{b}\left(1-rac{j}{b}
ight)-arepsilon
ight)rac{x}{|z|^2}>0,$$

which holds, since we have b > 0, $1 \le j \le b - 1$ and $x = \operatorname{Re}(z) > 0$.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Let X be a Hilbert scheme

$$G_X(T;q) := \sum_{n\geq 0} P(X;T)q^n,$$

with $P(X; T) \coloneqq \sum_{j} b_{j}(X) T^{j}$ the Poincaré polynomial.

イロト 不得 トイヨト イヨト 二日

Let X be a Hilbert scheme

$$G_X(T;q) := \sum_{n\geq 0} P(X;T)q^n,$$

with $P(X; T) \coloneqq \sum_{j} b_{j}(X)T^{j}$ the Poincaré polynomial.

Using orthogonality of roots of unity

$$\sum_{n\geq 0} B(a,b;X)q^n = \frac{1}{b}\sum_{r=0}^{b-1} \zeta_b^{-ar} G_X\left(\zeta_b^r;q\right).$$

Giulia Cesana (Universität zu Köln)

Boccalini's thesis states that

$$G_{X_{1}}(\zeta;q) = \sum_{n \geq 0} P(X_{1};\zeta) q^{n} = \frac{1+\zeta^{2}}{(1-\zeta^{2}q)(1-\zeta^{4}q^{2})} F_{3}(\zeta^{2};q)^{-1},$$

3

Boccalini's thesis states that

$$G_{X_1}(\zeta; q) = \sum_{n \ge 0} P(X_1; \zeta) q^n = \frac{1 + \zeta^2}{(1 - \zeta^2 q)(1 - \zeta^4 q^2)} F_3(\zeta^2; q)^{-1},$$

where $F_3(\zeta; q) \coloneqq \prod_{n=1}^{\infty} \left(1 - \zeta^{-1}(\zeta q)^n\right)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boccalini's thesis states that

$$G_{X_{1}}(\zeta;q) = \sum_{n \geq 0} P(X_{1};\zeta) q^{n} = \frac{1+\zeta^{2}}{(1-\zeta^{2}q)(1-\zeta^{4}q^{2})} F_{3}(\zeta^{2};q)^{-1},$$

where $F_3(\zeta; q) \coloneqq \prod_{n=1}^{\infty} (1 - \zeta^{-1}(\zeta q)^n)$. We obtain

$$egin{aligned} &\mathcal{H}_{X_1}(a,b;q) \coloneqq \sum_{n \geq 0} \mathcal{B}(a,b;X_1) q^n \ &= rac{1}{b} \left(1 + (-1)^a \delta_{2|b}
ight) \mathcal{G}_{X_1}(1;q) + rac{1}{b} \sum_{\substack{0 < r \leq b-1 \ r \neq rac{b}{2}}} \zeta_b^{-ar} \mathcal{G}_{X_1}\left(\zeta_b^r;q
ight). \end{aligned}$$

Giulia Cesana (Universität zu Köln)

3

Since

$$G_{X_1}(1; e^{-z}) = \frac{2}{(1 - e^{-z})(1 - e^{-2z})} (e^{-z}; e^{-z})_{\infty}^{-1}$$

= $\left(\frac{1}{z^2} + \frac{3}{2z} + \frac{11}{12} + O(z)\right) (e^{-z}; e^{-z})_{\infty}^{-1},$

(日) (周) (三) (三)

Since

$$egin{aligned} G_{X_1}(1;e^{-z}) &= rac{2}{(1-e^{-z})(1-e^{-2z})}(e^{-z};e^{-z})_\infty^{-1} \ &= \left(rac{1}{z^2}+rac{3}{2z}+rac{11}{12}+O(z)
ight)(e^{-z};e^{-z})_\infty^{-1}, \end{aligned}$$

the asymptotic behaviour is essentially controlled by the Pochhammer symbol.

3

∃ ► < ∃ ►</p>

< 4 → <

Since

$$G_{X_1}(1; e^{-z}) = \frac{2}{(1 - e^{-z})(1 - e^{-2z})} (e^{-z}; e^{-z})_{\infty}^{-1}$$

= $\left(\frac{1}{z^2} + \frac{3}{2z} + \frac{11}{12} + O(z)\right) (e^{-z}; e^{-z})_{\infty}^{-1},$

the asymptotic behaviour is essentially controlled by the Pochhammer symbol.

Using the asymptotic behaviour of $(q;q)_\infty$ we see that

$$G_{X_1}(1; e^{-z}) = rac{1}{\sqrt{2\pi}z^{rac{3}{2}}}e^{rac{\pi^2}{6z}}(1+O(|z|)).$$

Giulia Cesana (Universität zu Köln)

Since

$$G_{X_1}(1; e^{-z}) = \frac{2}{(1 - e^{-z})(1 - e^{-2z})} (e^{-z}; e^{-z})_{\infty}^{-1}$$

= $\left(\frac{1}{z^2} + \frac{3}{2z} + \frac{11}{12} + O(z)\right) (e^{-z}; e^{-z})_{\infty}^{-1},$

the asymptotic behaviour is essentially controlled by the Pochhammer symbol.

Using the asymptotic behaviour of $(q;q)_\infty$ we see that

$$G_{X_1}(1; e^{-z}) = rac{1}{\sqrt{2\pi}z^{rac{3}{2}}}e^{rac{\pi^2}{6z}}(1+O(|z|)).$$

For $\zeta_b^r \neq 1$ it is enough to show that on the major and minor arcs,

$$G_{X_1}(\zeta_b^r; q) = o(G_{X_1}(1; q)).$$

イロト 不得 トイヨト イヨト 二日

On the major arc (Bringmann-Craig-Males-Ono)

$$F_3(\zeta_b^{2r}; e^{-z})^{-1} \ll e^{\frac{\pi^2}{6z}}|z|^{-N},$$

for any $N \in \mathbb{N}$

On the major arc (Bringmann-Craig-Males-Ono)

$$F_3(\zeta_b^{2r}; e^{-z})^{-1} \ll e^{\frac{\pi^2}{6z}}|z|^{-N},$$

for any $N \in \mathbb{N}$ and therefore we see that $G_{X_1}(\zeta_b^r;q) = o(G_{X_1}(1;q)).$

On the major arc (Bringmann-Craig-Males-Ono)

$$F_3(\zeta_b^{2r}; e^{-z})^{-1} \ll e^{\frac{\pi^2}{6z}}|z|^{-N},$$

for any $N \in \mathbb{N}$ and therefore we see that $G_{X_1}(\zeta_b^r;q) = o(G_{X_1}(1;q)).$

On the minor arc we obtain that

$$\left| \mathsf{F}_{3}\left(\zeta_{b}^{2r};q\right)^{-1} \right| < \left| (q;q)_{\infty}^{-1} \right|$$

(二回) (三) (三) (三)

On the major arc (Bringmann-Craig-Males-Ono)

$$F_3(\zeta_b^{2r}; e^{-z})^{-1} \ll e^{\frac{\pi^2}{6z}}|z|^{-N},$$

for any $N \in \mathbb{N}$ and therefore we see that $G_{X_1}(\zeta_b^r;q) = o(G_{X_1}(1;q)).$

On the minor arc we obtain that

$$\left| \mathsf{F}_{3}\left(\zeta_{b}^{2r};q\right)^{-1} \right| < \left| (q;q)_{\infty}^{-1} \right|$$

and therefore again $G_{X_1}(\zeta_b^r; q) = o(G_{X_1}(1; q)).$

- 4 同 6 4 日 6 4 日 6

Thus toward z = 0 on the major arc we have

$$H_{X_1}(a,b;e^{-z}) = rac{d(a,b)}{\sqrt{2\pi}z^{rac{3}{2}}}e^{rac{\pi^2}{6z}}(1+O(|z|)).$$

3

Thus toward z = 0 on the major arc we have

$$H_{X_1}(a,b;e^{-z}) = rac{d(a,b)}{\sqrt{2\pi}z^{\frac{3}{2}}}e^{rac{\pi^2}{6z}}(1+O(|z|)).$$

We are left to apply BCMO with $A = \frac{\pi^2}{6}, B = -\frac{3}{2}$, and $\alpha_0 = \frac{d(a,b)}{\sqrt{2\pi}}$

Thus toward z = 0 on the major arc we have

$$H_{X_1}(a,b;e^{-z}) = rac{d(a,b)}{\sqrt{2\pi}z^{\frac{3}{2}}}e^{rac{\pi^2}{6z}}(1+O(|z|)).$$

We are left to apply BCMO with $A = \frac{\pi^2}{6}$, $B = -\frac{3}{2}$, and $\alpha_0 = \frac{d(a,b)}{\sqrt{2\pi}}$ which yields that

$$B(a,b;X_1) = \frac{\sqrt{3}d(a,b)}{2\pi^2} e^{\pi\sqrt{\frac{2n}{3}}} \left(1 + O\left(n^{-\frac{1}{2}}\right)\right),$$

from which one may also conclude asymptotic equidistribution.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Similarly, it is known that

$$G_{X_2}(\zeta;q) \coloneqq \frac{1+\zeta^2-\zeta^2q}{(1-\zeta^2q)(1-\zeta^4q^2)} F_3(\zeta^2;q)^{-1},$$

3

Similarly, it is known that

$$\begin{split} G_{X_2}(\zeta;q) &:= \frac{1+\zeta^2-\zeta^2 q}{(1-\zeta^2 q)(1-\zeta^4 q^2)} F_3\left(\zeta^2;q\right)^{-1}, \\ G_{X_3}(\zeta;q) &:= \frac{1}{(1-\zeta^2 q)(1-\zeta^4 q^2)} F_3\left(\zeta^2;q\right)^{-1}, \end{split}$$

3

Similarly, it is known that

$$\begin{split} G_{X_2}(\zeta;q) &\coloneqq \frac{1+\zeta^2-\zeta^2 q}{(1-\zeta^2 q)(1-\zeta^4 q^2)} F_3\left(\zeta^2;q\right)^{-1}, \\ G_{X_3}(\zeta;q) &\coloneqq \frac{1}{(1-\zeta^2 q)(1-\zeta^4 q^2)} F_3\left(\zeta^2;q\right)^{-1}, \\ G_{X_4}(\zeta;q) &\coloneqq F_3\left(\zeta^2;q\right)^{-1} \prod_{j=1}^m \frac{1}{1-\zeta^{2j}q^j}. \end{split}$$

Giulia Cesana (Universität zu Köln)

3

Similarly, it is known that

$$egin{aligned} &G_{X_2}(\zeta;q) \coloneqq &rac{1+\zeta^2-\zeta^2 q}{(1-\zeta^2 q)(1-\zeta^4 q^2)}F_3\left(\zeta^2;q
ight)^{-1}, \ &G_{X_3}(\zeta;q) \coloneqq &rac{1}{(1-\zeta^2 q)(1-\zeta^4 q^2)}F_3\left(\zeta^2;q
ight)^{-1}, \ &G_{X_4}(\zeta;q) \coloneqq &F_3\left(\zeta^2;q
ight)^{-1}\prod_{j=1}^mrac{1}{1-\zeta^{2j}q^j}. \end{aligned}$$

An analogous argument to the case of X_1 holds.

< A[™] →

4 E N

Thank you for your attention!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●