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Giulia Cesana (Universität zu Köln) Asymptotic equidistribution March 28, 2022 1 / 42



Table of Contents

1 Motivation

2 Main tools and central theorem

3 Results on partition statistics

4 Results on topological invariats

5 Some proofs
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Motivation

A partition λ of a positive integer n is a list of non-increasing positive
integers, say λ = (λ1, λ2, . . . , λm), that satisfies |λ| := λ1 + · · ·+ λm = n.

p(n) := # of partitions of n

Example

For n = 4 the possible partitions are given by

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

Thus we have p(4) = 5.
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Motivation

Equidistribution properties of certain objects are a central theme studied
by many authors in many mathemathical fields.

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function e.g. c(n) = p(n).
Suppose s(λ) is an integer valued partition invariant and let

c(a, b; n) := #{partitions of n : s(λ) ≡ a (mod b)}.

To say that equidistribution holds is to say that

c(a, b; n) ∼ 1

b
c(n)

as n→∞.
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Motivation

Examples for recently studied modular typed objects:

1 Asymptotic equidistribution of partition ranks (Males).

2 Asymptotic equidistribution results for partitions into k-th powers
(Ciolan).

3 Asymptotic equidistribution for Hodge numbers and Betti numbers of
certain Hilbert schemes of surfaces
(Gillman−Gonzalez−Ono−Rolen−Schoenbauer).

4 Asymptotic equidistribution of partitions whose parts are values of a
given polynomial (Zhou).
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Motivation

Each partition λ = (λ1, λ2, . . . , λm) has a Ferrers–Young diagram:

. . . ← λ1 many nodes
. . . ← λ2 many nodes

...
...

...
. . . ← λm many nodes

The node in row k and column j has hook length

h(k , j) := (λk − k) + (λ′j − j) + 1,

λ′j := # nodes in column j .
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Motivation

Let Ht(λ) denote the multiset of t-hooks, those hook lengths which are
multiples of a fixed positive integer t, of a partition λ.

Let

pet (n) := #{λ a partition of n : #Ht(λ) is even},
pot (n) := #{λ a partition of n : #Ht(λ) is odd}.

Craig−Pun:
For even t the partitions of n are asymptotically equidistributed between
these two subsets, for odd t they are not.

Bringmann−Craig−Males−Ono:
On arithmetic progressions modulo odd primes t-hooks are not
asymptotically equdistributed. The Betti numbers of two specific Hilbert
schemes are asymptotically equdistributed.
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Wright’s Circle Method

Hardy−Ramanujan, 1918

p(n) ∼ 1

4
√

3n
· eπ

√
2n
3 , as n→∞.

The essence of Wright’s method is to use Cauchy’s theorem. We have

A(τ) :=
∑
n≥0

a(n)qn −→ a(n) =
1

2πi

∫
C

A(q)

qn+1
dq,

where q = e2πiτ .
One then splits the integral into two arcs, the major arc and minor arc.

Following Wright and the work of Ngo−Rhoades,
Bringmann−Craig−Males−Ono proved the following variant of Wright’s
Circle Method.
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Variant of Wright’s Circle Method

Let M > 0 be a fixed constant and z = x + iy ∈ C, with x > 0 and
|y | < π.

Consider the following hypotheses:

(i) As z → 0 in the bounded cone |y | ≤ Mx (major arc), we have

F (e−z) = zBe
A
z (α0 + OM (|z |)) ,

where α0 ∈ C, A ∈ R+, and B ∈ R.

(ii) As z → 0 in the bounded cone Mx ≤ |y | < π (minor arc), we have

|F (e−z)| �M e
1

Re(z)
(A−κ)

,

for some κ ∈ R+.
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Giulia Cesana (Universität zu Köln) Asymptotic equidistribution March 28, 2022 9 / 42



Variant of Wright’s Circle Method

Bringmann−Craig−Males−Ono, 2021

Suppose that F (q) is analytic for q = e−z where z = x + iy ∈ C satisfies
x > 0 and |y | < π,

and suppose that F (q) has an expansion
F (q) =

∑∞
n=0 c(n)qn near 1.

If (i) and (ii) hold, then as n→∞ we have

c(n) = n
1
4

(−2B−3)e2
√
An
(
p0 + O

(
n−

1
2

))
,

where p0 = α0

√
A
B+ 1

2

2
√
π

.
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Setting of Central Theorem

Let q = e−z , where z = x + iy ∈ C with x > 0 and |y | < π.

Furthermore let ζ = ζab := e
2πia
b (b ≥ 2 and 0 ≤ a < b).

Assume that we have a generating function on arithmetic progressions a
(mod b) given by

H(a, b; q) :=
∑
n≥0

c(a, b; n)qn,

for some coefficients c(a, b; n) such that

H(a, b; q) =
1

b

b−1∑
j=0

ζ−ajb H(ζ jb; q)

for some generating functions H(ζ; q), with

H(q) := H(1; q) =
∑
n≥0

c(n)qn.
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Setting of Central Theorem
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Setting of Central Theorem

Let H(a, b; q) and H(ζ; q) be analytic on |q| < 1 such that the above
holds.

Let C = Cn be a sequence of circles centered at the origin inside the unit
disk with radii rn → 1 as n→∞ that loops around zero exactly once.
For 0 ≤ θ < π

2 let

Dθ :=
{
z = re iα : r ≥ 0 and |α| ≤ θ

}
.

R

iR

Dπ
4
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Giulia Cesana (Universität zu Köln) Asymptotic equidistribution March 28, 2022 12 / 42



Setting of Central Theorem

Let H(a, b; q) and H(ζ; q) be analytic on |q| < 1 such that the above
holds.
Let C = Cn be a sequence of circles centered at the origin inside the unit
disk with radii rn → 1 as n→∞ that loops around zero exactly once.
For 0 ≤ θ < π

2 let

Dθ :=
{
z = re iα : r ≥ 0 and |α| ≤ θ

}
.

R

iR

Dπ
4
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Setting of Central Theorem

For θ > 0, let C̃ := C ∩ Dθ and C\C̃ be arcs such that the following
hypotheses hold.

(1) As z → 0 outside of Dθ, we have

b−1∑
j=1

ζ−ajb H(ζ jb; e−z) = O
(
H(1; e−z)

)
.

(2) As z → 0 in Dθ, we have for each 1 ≤ j ≤ b − 1 that

H(ζ jb; e−z) = o
(
H(1; e−z)

)
.

(3) As n→∞, we have

c(n) ∼ 1

2πi

∫
C̃

H(1; q)

qn+1
dq.
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Central Theorem

C.−Craig−Males, 2021

As n→∞, we have

c(a, b; n) ∼ 1

b
c(n).

In particular, if H(1; q) and H(ζ; q) satisfy the conditions of BCMO we
have that

c(a, b; n) ∼ 1

b
c(n) ∼ 1

b
n

1
4

(−2B−3)e2
√
An
(
p0 + O

(
n−

1
2

))
as n→∞.
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Idea of the proof

1 Use Cauchy’s theorem and the decomposition of H(a, b; q) to obtain

c(a, b; n) =
1

b

[
1

2πi

∫
C

∑b−1
j=0 ζ

−aj
b H(ζ jb; q)

qn+1
dq

]
.

2 Break down the integral over C into the components C̃ and C\C̃ and
look at each of them seperately.

3 Along C\C̃ we have by conditions (1) and (3) that as n→∞

1

2πi

∫
C\C̃

∑b−1
j=0 ζ

−aj
b H(ζ jb; q)

qn+1
dq = o

(
1

2πi

∫
C̃

H(1; q)

qn+1
dq

)
.
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Giulia Cesana (Universität zu Köln) Asymptotic equidistribution March 28, 2022 15 / 42



Idea of the proof

4 On C̃ we obtain with (2) and as n→∞ that

1

2πi

∫
C̃

∑b−1
j=0 ζ

−aj
b H(ζ jb; q)

qn+1
dq ∼ 1

2πi

∫
C̃

H(1; q)

qn+1
dq.

5 The first claim follows by combining the estimates along C̃ and C\C̃ .

6 If we assume H(1; q) and H(ζ jb; q) satisfy the hypotheses of BCMO,
then (1) – (3) are satisfied and the result follows by the asymptotic
for c(n) in BCMO.
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Asymptotic convexity

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Assume that H(1; q) and H(ζ; q) satisfy the
conditions of BCMO. Then for sufficiently large n1, n2 we have

c(a, b; n1)c(a, b; n2) > c(a, b; n1 + n2).

Known examples:

1 partition function (Bessenrodt−Ono)

2 partition ranks congruent to a (mod b) (Hou−Jagadeesan, Males)
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Log-concavity

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Assume that H(1; q) and H(ζ; q) satisfy the
conditions of BCMO. For large enough n, we have

c(a, b; n)2 ≥ c(a, b; n − 1)c(a, b; n + 1).

Known examples:

1 partition function (DeSalvo−Pak)

2 unimodal sequences of size n and rank m
(Bringmann−Jennings-Shaffer−Mahlburg−Rhoades)

3 spt-function (Dawsey−Masri)
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The rank

Ramanujan congruences, 1921

For n ≥ 0 we have

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Example

The rank of a partition λ is the largest part minus the number of parts.

The ranks of the partitions of 4:

partition rank

(4) 3 ≡ 3 (mod 5)
(3, 1) 1 ≡ 1 (mod 5)
(2, 2) 0 ≡ 0 (mod 5)

(2, 1, 1) −1 ≡ 4 (mod 5)
(1, 1, 1, 1) −3 ≡ 2 (mod 5)
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The rank

N(a, b; n) := # of partitions of n with rank congruent to a (mod b)

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

N(a, b; n) =
1

b
p(n)

(
1 + O

(
n−

1
2

))
.

The equidistribution of N(a, b; n) was already proven by Males in 2021
using Ingham’s Tauberian theorem.
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The crank

crank(λ) :=

{
largest part of λ if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0

ω(λ) := # of ones in λ, µ(λ) := # of parts greater than ω(λ)

M(a, b; n) := # of partitions of n with crank congruent to a (mod b)

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

M(a, b; n) =
1

b
p(n)
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The first residual crank

An overpartition is a partition where the first occurrence of each distinct
number may be overlined.

Example

The overpartitions of 4 are given by

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2),

(2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

The first residual crank of an overpartition is given by the crank of the
subpartition consisting of the non-overlined parts.
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The first residual crank

Example

So the first residual crank of (2, 1, 1) is given by the crank of (2, 1) which
equals 0.

M(a, b; n) := # of overpartitions of n

with first residual crank congruent to a (mod b)

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

M(a, b; n) =
1

8bn
eπ
√
n
(

1 + O
(
n−

1
2

))
.

Giulia Cesana (Universität zu Köln) Asymptotic equidistribution March 28, 2022 23 / 42



The first residual crank

Example

So the first residual crank of (2, 1, 1) is given by the crank of (2, 1) which
equals 0.

M(a, b; n) := # of overpartitions of n

with first residual crank congruent to a (mod b)

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

M(a, b; n) =
1

8bn
eπ
√
n
(

1 + O
(
n−

1
2

))
.
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Plane partitions

A plane partition of n is a two-dimensional array πj ,k of non-negative
integers j , k ≥ 1, that is non-increasing in both variables, i.e.,
πj ,k ≥ πj+1,k , πj ,k ≥ πj ,k+1 for all j and k , and fulfils |Λ| :=

∑
j ,k πj ,k = n.

pp(n) := # plane partitions of n

Example

For n = 3 we have the plane partitions:

1 1 1 1 1
1

1
1
1

2 1 2
1

3

Thus we have pp(3) = 6.
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Giulia Cesana (Universität zu Köln) Asymptotic equidistribution March 28, 2022 24 / 42



Plane partitions

A plane partition may be represented visually by the placement of a stack
of πj ,k unit cubes above the point (j , k) in the plane, giving a
three-dimensional solid.
The sum |Λ| then describes the number of cubes of which the plane
partition consists.
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Plane partitions

Let Λ = {πj ,k}j ,k≥1 and define its trace by t(Λ) =
∞∑
j=1

πj ,j .

pp(a, b; n) := #{Λ : |Λ| = n, t(Λ) ≡ a (mod b)}

Example

We have that pp(0, 2; 3) = 2 and pp(1, 2; 3) = 4.

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. Then as n→∞ we have that

pp(a, b; n) ∼ 1

b
pp(n) ∼ 1

b

ζ(3)
7

56

√
12π

(n
2

)− 25
36

exp

(
3ζ(3)

1
3

(n
2

) 2
3

+ ζ ′(−1)

)
.
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Betti numbers of Hilbert schemes

Betti numbers count the dimension of certain vector spaces of differential
forms of a manifold.

For a Hilbert scheme X , let bj(X ) := dim(Hj(X ,Q)) be the Betti
numbers, where Hj(X ,Q) denotes the j-th homology group of X with
rational coefficients.

B(a, b;X ) :=
∑

j≡a (mod b)

bj(X )

We define the Hilbert schemes

X1 := Hilbn,n+1,n+2(0), X2 := Hilbn,n+2(0),

X3 := Hilbn,n+2
(
C2
)

tr
, X4 := M̂m(cN),

where m ∈ N and cN is some prescribed homological data.
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Betti numbers of Hilbert schemes

C.−Craig−Males, 2021

Let 0 ≤ a < b with b ≥ 2 and

d(a, b) :=


1
b if b is odd,
2
b if a and b are even,

0 if a is odd and b is even.

Then as n→∞ we have that

1

2
B(a, b;X1) ∼ B(a, b;X2) ∼ B(a, b;X3) =

d(a, b)
√

3

4π2
eπ
√

2n
3

(
1 + O

(
n−

1
2

))
and

B(a, b;X4) =
d(a, b)n

m−2
2

6
1−m

2 2
√

2cmπm
eπ
√

2n
3

(
1 + O

(
n−

1
2

))
,

where
∏m

j=1
1

1−e−jz = 1
cmzm

+ O(z−m+1).
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A particular scheme of Göttsche

Let K be an algebraically closed field.

Let m be the maximal ideal in K [[x , y ]], and define

Vn,K := Hilbn (spec (K [[x , y ]]/mn)) .

v(a, b; n) := # of cells of Vn,K

whose dimension is congruent to a (mod b)

C.−Craig−Males, 2021

Let 0 ≤ a < b and b ≥ 2. As n→∞ we have that

v(a, b; n) =
1

b
p(n)

(
1 + O

(
n−

1
2

))
.
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Proof for crank

Using orthogonality of roots of unity we have

∑
n≥0

M(a, b; n)qn =
1

b

∑
n≥0

p(n)qn +
1

b

b−1∑
j=1

ζ−ajb C
(
ζ jb; q

)
,

where

C (ζ; q) :=
(q; q)∞

F1 (ζ; q)F1 (ζ−1; q)
,

with (q; q)∞ :=
∏∞
`=1(1− q`) and F1(ζ; q) :=

∏∞
n=1 (1− ζqn).
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Proof for crank

As z → 0 in Dθ, for q = e−z and ζ a primitive b-th root of unity
(Bringmann−Craig−Males−Ono)

F1

(
ζ; e−z

)
=

1√
1− ζ

e−
ζΦ(ζ,2,1)

z (1 + O (|z |)) ,

where Φ is the Lerch’s transcendent

Φ(z , s, a) :=
∞∑
n=0

zn

(n + a)s
.

On the major arc (Bringmann−Dousse)(
e−z ; e−z

)−1

∞ =

√
z

2π
e
π2

6z (1 + O(|z |)),

while on the minor arc, for some C > 0∣∣∣(e−z ; e−z
)−1

∞

∣∣∣ ≤ x
1
2 e

π2

6x
−C

x .
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z

2π
e
π2

6z (1 + O(|z |)),

while on the minor arc, for some C > 0∣∣∣(e−z ; e−z
)−1

∞

∣∣∣ ≤ x
1
2 e

π2

6x
−C

x .
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Proof for crank

Using the definition of F1(ζ; q)

∣∣∣∣Log

(
1

F1(ζ; q)

)∣∣∣∣ =

∣∣∣∣∣∣
∑
k≥1

ζk

k

qk

1− qk

∣∣∣∣∣∣
≤
∣∣∣∣ ζq

1− q

∣∣∣∣− |q|
1− |q|

+ log

(
1

(|q|; |q|)∞

)
.

⇒
∣∣∣∣ 1

F1(ζ; q)

∣∣∣∣� e−
C′
x (|q|; |q|)−1

∞ ,

for some C′ > 0.
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Proof for crank

Since an analogous calculation holds for F1(ζ−1; q) one may conclude that∣∣∣C (ζ jb; q
)∣∣∣ < ∣∣(q; q)−1

∞
∣∣

on the minor arc.

For the major arc

C (ζ; q)� e
−π

2

6
Re( 1

z )+Re
(
ζΦ(ζ,2,1)

z

)
+Re

(
ζ−1Φ(ζ−1,2,1)

z

)
.
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Proof for crank

Therefore
C
(
ζ jb; q

)
= o

(
(q; q)−1

∞
)

if and only if (
π2

3
− ε− φ1 − φ′1

)
x

|z |2
>
(
φ2 + φ′2

) y

|z |2
,

where φ1 + iφ2 := ζ jbΦ(ζ jb, 2, 1) and φ′1 + iφ′2 := ζ−jb Φ(ζ−jb , 2, 1).
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Proof for crank

Note that φ1 = π2

6 −
π2j
b

(
1− j

b

)
= φ′1 and φ2 = −φ′2.

Therefore, our assumption reduces to(
2π2j

b

(
1− j

b

)
− ε
)

x

|z |2
> 0,

which holds, since we have b > 0, 1 ≤ j ≤ b − 1 and x = Re(z) > 0.
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Proof for Betti numbers

Let X be a Hilbert scheme

GX (T ; q) :=
∑
n≥0

P(X ;T )qn,

with P(X ;T ) :=
∑

j bj(X )T j the Poincaré polynomial.

Using orthogonality of roots of unity

∑
n≥0

B(a, b;X )qn =
1

b

b−1∑
r=0

ζ−arb GX (ζrb; q) .
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Proof for Betti numbers

Boccalini’s thesis states that

GX1(ζ; q) =
∑
n≥0

P (X1; ζ) qn =
1 + ζ2

(1− ζ2q)(1− ζ4q2)
F3

(
ζ2; q

)−1
,

where F3(ζ; q) :=
∏∞

n=1

(
1− ζ−1(ζq)n

)
.

We obtain

HX1(a, b; q) :=
∑
n≥0

B(a, b;X1)qn

=
1

b

(
1 + (−1)aδ2|b

)
GX1(1; q) +

1

b

∑
0<r≤b−1

r 6= b
2

ζ−arb GX1 (ζrb; q) .
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Proof for Betti numbers

Since

GX1(1; e−z) =
2

(1− e−z)(1− e−2z)
(e−z ; e−z)−1

∞

=

(
1

z2
+

3

2z
+

11

12
+ O(z)

)
(e−z ; e−z)−1

∞ ,

the asymptotic behaviour is essentially controlled by the Pochhammer
symbol.
Using the asymptotic behaviour of (q; q)∞ we see that

GX1(1; e−z) =
1

√
2πz

3
2

e
π2

6z (1 + O(|z |)).

For ζrb 6= 1 it is enough to show that on the major and minor arcs,

GX1(ζrb; q) = o(GX1(1; q)).
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Proof for Betti numbers

On the major arc (Bringmann−Craig−Males−Ono)

F3(ζ2r
b ; e−z)−1 � e

π2

6z |z |−N ,

for any N ∈ N

and therefore we see that GX1(ζrb; q) = o(GX1(1; q)).

On the minor arc we obtain that∣∣∣F3

(
ζ2r
b ; q

)−1
∣∣∣ < ∣∣(q; q)−1

∞
∣∣

and therefore again GX1(ζrb; q) = o(GX1(1; q)).
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Proof for Betti numbers

Thus toward z = 0 on the major arc we have

HX1(a, b; e−z) =
d(a, b)
√

2πz
3
2

e
π2

6z (1 + O(|z |)).

We are left to apply BCMO with A = π2

6 ,B = −3
2 , and α0 = d(a,b)√

2π
which

yields that

B(a, b;X1) =

√
3d(a, b)

2π2
e
π
√

2n
3

(
1 + O

(
n−

1
2

))
,

from which one may also conclude asymptotic equidistribution.
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Proof for Betti numbers

Similarly, it is known that

GX2(ζ; q) :=
1 + ζ2 − ζ2q

(1− ζ2q)(1− ζ4q2)
F3

(
ζ2; q

)−1
,

GX3(ζ; q) :=
1

(1− ζ2q)(1− ζ4q2)
F3

(
ζ2; q

)−1
,

GX4(ζ; q) :=F3

(
ζ2; q

)−1
m∏
j=1

1

1− ζ2jqj
.

An analogous argument to the case of X1 holds.
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Thank you for your attention!
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